
Hardware Design and Accurate Simulation of Structured-Light
Scanning for Benchmarking of 3D Reconstruction Algorithms:
Technical Design Document

SEBASTIAN KOCH∗, Technische Universität Berlin, Germany
YURII PIADYK∗, New York University, USA
MARKUS WORCHEL, Technische Universität Berlin, Germany
MARC ALEXA, Technische Universität Berlin, Germany
CLAUDIO SILVA, New York University, USA
DENIS ZORIN, New York University, USA
DANIELE PANOZZO, New York University, USA

Real Simulated Mask Difference

Fig. 1. From left to right: the image of the Pawn (inverted colors) acquired by a camera is faithfully reproduced by our scanning simulator after hardware
calibration. The mask shows that pixel-wise difference rarely exceeds 5% of the average brightness in the middle of the white checker highlighted by the green
rectangle which is used to normalize the images (i.e. 100%, or 1.0). A close-up view of the highlighted red region shown in Figure 12. The height of this model is
152.5mm.

We co-developed a 3D structured light scanning hardware setup together

with a corresponding light transport simulation with the objective of min-

imizing the difference of the images on a per-pixel level (Figure 1). Such

scanner simulator is an ideal test-bed for developing data-driven reconstruc-

tion algorithms, as it allows generating synthetic datasets that match the

result of scanning, enabling the algorithms trained on synthetic data to

generalize onto real scanner.

In this document, we provide detailed description of our scanning setup

and the corresponding simulator. We start with a Structured-Light Scanning

(SLS) overview and discuss different factors driving our decisions and design

choices, both for physical setup and the simulator.

General discussion in the main section is accompanied by four appendices

on hardware design, parameterization and calibration, reconstruction, and

dataset generation, with in-depth explanation of implementation details

and code references. All the data can be found at https://archive.nyu.edu/

handle/2451/62251 and the software repository is hosted at https://github.

com/geometryprocessing/scanner-sim.

∗
Both authors contributed equally to this work.

1 HARDWARE SETUP AND SIMULATOR
A structured-light scanning setup is composed of 3 main compo-

nents: a camera 𝐶 , a projector 𝑃 , and the object being scanned 𝑂 ,

which can be optionally placed on a moving stage 𝑆 (Figure 2).

We refer to Lanman and Taubin [Lanman and Taubin 2009] for

a more detailed introduction to structured-light scanning. In the

following we provide a brief reminder of the general approach and

provide the details of our design decisions in view of the acquisition-

simulation system as a whole. Our aim is to build the system so

that its simulation can be performed as accurately as possible. Also,

to support reproducibility and adoption, we restrict the design to

readily available components.

SLS Primer. Assuming that the position of all the objects in the

scene is known to sufficient accuracy, a 3D object can be recon-

structed by illuminating a single pixel of the projector at a time,

detecting the location of the illuminated point on the camera sensor

and then triangulating. This procedure is impractically slow. By

projecting a set of coded patterns (Figure 3) it is possible to estab-

lish correspondences between camera and projector pixels from a

1

https://archive.nyu.edu/handle/2451/62251
https://archive.nyu.edu/handle/2451/62251
https://github.com/geometryprocessing/scanner-sim
https://github.com/geometryprocessing/scanner-sim

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Fig. 2. A diagram illustrating our structured-light scanner setup and the
parameters associated with each component (see Table 1 in Appendix A for
a detailed explanation).

small set of images [Couture et al. 2011; Gupta and Nayar 2012].

However, this adds additional algorithmic complexity for decoding

the patterns to compute the correspondences.

The accuracy of the reconstruction depends on many factors,

including the resolution of the camera and projector, the lenses

used, and the accuracy of the estimation of the relative position

of camera and projector. Finding this set of parameters is called

calibration of the scanner, which is usually performed by ‘scanning‘

objects of known geometry.

In this work, we carefully analyze each component of the scan-

ning system, selecting hardware components to minimize the noise

that we cannot simulate, and we propose a corresponding calibra-

tion procedure with the goal of minimizing reconstruction errors.

Different from existing approaches, we do not strive to make the

calibration procedure simple and/or efficient, our goal is solely on

minimizing effects that cannot be recovered by optimization meth-

ods in the computational part of the system.

Overview. We systematically consider each component of our

scanning setup explaining: (1) why is it important and how does it

affect reconstruction error, (2) the specific hardware we selected, (3)

how the component is parametrized in the synthetic setting, (4) the

protocol we use to calibrate these parameters using a combination

of physical measurements and numerical optimization, and (5) how

the model and parameters are used in the physically based renderer

Mitsuba [Jakob 2010]. We then perform a series of experiments

(see main paper) to validate our choices, quantifying the errors by

pixel-wise difference of real-images with synthetic renderings, both

on calibration objects (i.e. with geometry know up to machining

tolerances) as well as unknown scenes.

For brevity, we focus on (1) and (5) in this section and provide

a high level summary of (2-4) where necessary as well as a flow

chart of the calibration pipeline (Figure 4). The details on (2-4) are

available in the appendices.

1.1 Calibration Objects
To build a highly accurate structured-light scanner we need the

following objects for calibration:

• A CharuCo board [Garrido-Jurado et al. 2014] for accurate

calibration of the camera and projector geometry.

Fig. 3. The three different light coding schemes (from left to right, Gray
codes [Sato and Inokuchi 1985], unstructured-light [Couture et al. 2011],
and micro phase shifting [Gupta and Nayar 2012]) that we used in our
structured-light scanning pipeline. Other schemes can be easily added.

• A linear stage capable of accurately reproducing positions

for the CharuCo calibration board with known intervals to

measure the focus distance and the aperture for both the

camera and the projector.

• A Spectralon® for the radiometric calibration of camera and

projector.

• A set of accurate calibration objects (Figure 14).

Figure 4 is showing the interdependencies of different scanner

parameters (Table 1) with regard to how they are being acquired. At

this stage, we are directly measuring the coating thickness d with a

micrometer (before and after applying the coating).

Rendering. The CharuCo board is modeled as a properly sized

slab (checkers with size 𝑆𝐶) with colored vertices placed in accor-

dance with the markers of the physical board. The linear and ro-

tation stage are defined by a translation 𝑇𝑆 and rotation 𝑅𝑆 of the

calibration board. The calibration and validation objects are densely

triangulated 3D models extracted from the CADmodels using Open-

Cascade. In general, textured or colored OBJ and PLY objects can be

loaded into the simulation. We disable the interpolation of surface

normals to support sharp edges, corners and creases, which are

common in machined objects.

1.2 Camera
The camera is a central component in the setup. All the other com-

ponents are located/calibrated based on images obtained with the

camera. We want to maximize its resolution (in pixels per mm)

at a focus distance where the object of interest is located, while

maintaining a sufficient field and depth of view. This value is a

function of multiple parameters of the camera, the most relevant

being the pixel size, focal length, sensor size, aperture, and actual

focus distance. While the influence of each independent parameter

on the final resolution is known, one cannot choose an arbitrary

combination because they are interconnected. A compromise must

thus be made. For example, increasing the focal length improves the

desired resolution only up to reaching the diffraction limit of the

lens and narrow depth of field due to the finite aperture size. We

have chosen a 31.4 MP camera with 50 mm lens.

To calibrate the camera (Figure 4, 1) with subpixel accuracy (the

average reprojection error amounted to 0.9 pixels) we used the

CharuCo board and the OpenCV [Bradski 2000] implementation of

the algorithm by Zhang et al. [Zhang 2000].

Another important factor is noise the dynamic range of the cam-

era. Since we need to work with projected patterns, possibly bright

2

https://www.opencascade.com/
https://www.opencascade.com/

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

specular reflections and low ambient light levels, a high dynamic

range (HDR) image capture is required [Debevec and Malik 1997].

We typically acquire 6 images with different exposure times and

combine them into a single HDR image by calculating the total

amount of light recorded by each pixel and dividing it by the to-

tal exposure time. This significantly reduces the amount of image

noise (no need to simulate) and we also subtract corresponding dark

frames and replace hot/stuck pixels.

Rendering. The camera is simulated with a thin lens perspective

camera model, a common choice to simulate aperture and depth

of field. In Mitsuba, this model is implemented by the thinlens sen-
sor (Section 8.9.2 of the documentation). As in the physical setup,

the camera frame is aligned with the world frame (z-axis pointing

forward, x-axis pointing to the right and y-axis to the bottom). We

calculate the vertical (or alternatively horizontal) field of view from

the calibration matrix𝑀𝐶𝑂 and the image width𝑊𝐶 and height 𝐻𝐶

with the function OpenCV:calibrationMatrixValues. The aper-
ture 𝑓𝐶 and focus distance 𝐹𝐶 were translated to scene units and

plugged into the thin lens model. Similarly, the pixel ratio and the

shift of the optical axis from the image center were derived from

𝑀𝐶𝑂 and applied as scaling and cropping to the virtual image sensor.

To match the images of the physical camera, we render high

dynamic range images with the same resolution𝑊𝑃 × 𝐻𝑃 (covered

byMitsuba hdrfilm, see Section 8.12.1 in the documentation). Besides

the color or luminance information in each pixel, we also read

and store ground truth depth and distance values from the ray

intersection records (Mitsuba field extraction integrator, Section
8.10.18 in the documentation) in the resulting OpenEXR images.

As we have recorded the distortion coefficients 𝑑𝐶 and vignetting

offset 𝑉𝐶 in the hardware calibration, it would be possible to apply

them to the simulated camera as well. However, we opted for remov-

ing them directly in the recorded images, as this is what is usually

done for 3D scanning applications, because the distortion/vignetting

might otherwise affect the reconstruction. Therefore, 𝑑𝐶 and𝑉𝐶 are

not used in the renderer.

1.3 Lights
We assume the scene is lit only by two sources of light: the projector

and ambient light, which include parasitic light of the projector

reflected back into the scene by the surrounding environment.

The projector is chosen with considerations similar to the camera:

maximizing spatial resolution without sacrificing too much field

of view or depth of field. An additional important consideration is

the ability to focus at a close distance. DLP projectors (based on a

Digital Micromirror Device) have an advantage over LCD because

of their superior contrast and absence of color bleeding [Inoshita

et al. 2013]. Colors in such projectors are obtained via temporal

multiplexing of the RGB components instead of spatially separated

color filters, which restricts the range of possible camera exposures

to multiples of 1/refresh rate of the projector to avoid color artifacts

(or temporal inconsistency for monochrome camera like ours).

Ambient light is used while acquiring the images of the CharuCo

board during calibration of the projector and of the rotating stage.

The brightness of the ambient lights should be lower than the pro-

jector so that they (together with the parasitic light of the projector)

SC, WC, HC

Geometr ic (Intr insic)
Camera Calibration

MC, dC, MCO

[0] Dir ect
Measurements

fC, d

Know n Constants
Geometr ic (Intr insic)
Projector Calibration

SP, WP, HPKnow n Constants

MP, dP, MPO

[1] CharuCo Board w ith Lights

[3] CharuCo Board on Linear Stage (Camera Behind Projector)

[3'] Clear Board on Linear Stage (Same Positions)

Reconstructed Posi tions
of Chruco Board

Reconstructed Posi tions
of Checker Corners

Reconstructed Defocus
of Projected Pixels

Reconstructed Defocus
of Sharp Edge

FC

fP, FP

[4] CharuCo Board on Linear Stage (Camera in Final Posi tion)

Reconstructed Posi tions
of Chruco Board

Reconstructed Posi tions
of Checker Corners

Geometr ic (Extr insic)
Projector Calibration

TP, RP

[5] CharuCo Board on Rotating Stage (Camera in Final Posi tion)

Reconstructed Posi tions
of Chruco Board

Reconstructed Posi tions
of Checker Corners

 Stage Calibration

TS, RS

[2] Spectralon Target
(w i th Side Lights)

Camera Vignetting
Calibration

VC

Projector Vignetting
Calibration

VP

Side Lights On

Side Lights Off

Projector Light
Source Calibration

r P, BP

Fig. 4. Diagram of the dependencies of parameters during the calibration
sequence. See Table 1 for a description of the symbols.

can be removed by subtraction to obtain a clean image of the object

illuminated by projected pattern only.

The parametrization of the projector is similar to the one used for

the camera, but with additional extrinsic parameters 𝑅𝑃 and𝑇𝑃 . The

calibration of the projector (Figure 4, [3]) is done with the help of

the camera by projecting a checker pattern onto a CharuCo board

(Figure 16). One can reconstruct the positions of checker corners of

the projected pattern for different positions of the CharuCo board

and combine them into a single ”3D calibration object” to use for the

estimation of the intrinsic projector parameters (see Appendix B.3

for more details). We use a linear stage to reproduce the same posi-

tions for the CharuCo board (Figure 4, [3]) but now with the clear

side facing forward. This enables us to measure the projector focus

distance 𝐹𝑃 and aperture 𝑓𝑃 (Figure 16, right). The same experiment

is used to refine the value of the camera focus distance 𝐹𝐶 , which

was initially estimated from lens markings.

Rendering. To simulate the physical projector and its effects on

the scanning procedure, we extend a spot light source (Mitsuba spot
emitter see Section 8.8.3 of the documentation). The position and

orientation of this light source are converted from 𝑇𝑃 and 𝑅𝑃 to

scene units (meters instead of millimeters). For radial distortion and

vignetting, we apply the measured distortion coefficients 𝑑𝑃 and

vignetting levels𝑉𝑃 to the projected patterns before projecting them

3

https://www.openexr.com/
https://en.wikipedia.org/wiki/Digital_Light_Processing
https://en.wikipedia.org/wiki/LCD_projector

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

into the scene. This simulates the distortion and vignetting effect

caused by the optical path in the physical projector. We also map the

pre-distorted patterns using the measured projector response func-

tion 𝑟𝑃 prior to simulation. The patterns are read in as images of size

𝑊𝑃 × 𝐻𝑃 . To minimize interpolation artifacts occurring during the

predistortion procedure, it is also possible to feed in larger pattern

images as long as they have the same aspect ratio between width

and height. We tested our procedure with the patterns shown in

Figure 3, but arbitrary patterns are supported. The field of view is de-

rived from the calibration matrix𝑀𝑃𝑂 and the image width𝑊𝑃 and

height 𝐻𝑃 with the function OpenCV::calibrationMatrixValues.
Depth of field or defocusing of the projector light is a significant

source of noise in structured-light scanning. We therefore extend

the spot emitter to support depth of field effects. This is done similar

to the thin lens camera model and was also already used by [Berger

et al. 2013]. The modified spot emitter supports focus distance and

aperture, which are plugged in from 𝐹𝑃 and 𝑓𝑃 after translation

to scene units. In addition, we apply the measured pixel ratio and

shift of optical axis read from 𝑀𝑃𝑂 by padding the pattern images

and shifting the optical center. To match the intensity levels of the

virtual projector and the physical projector, we use gradient descent

as described in Section 1.5. The diffuse ambient light of the physical

setup is also matched by a diffuse light source in simulation (Mitsuba

constant emitter see Section 8.8.10 of the documentation).

1.4 Scanner Geometry
The geometry of the scanner is defined by the position of the projec-

tor (𝑇𝑃 , 𝑅𝑃) and of the rotating stage (𝑇𝑆 , 𝑅𝑆) relative to the camera.

The angle between the optical axes of the camera and projector is a

defining factor for the performance of the scanner. Small angles lead

to decreased reconstruction accuracy. Large angles lead to shadows

on large regions of the scanned object. As a compromise, we settle

for a commonly used angle of 30 degrees.

To calibrate the extrinsic projector parameters, we repeat the same

procedure as for intrinsic but with the camera in its final position

and not behind the projector (see Figure 16, 4 vs 3). We enforce the

already known intrinsic parameters and only keep the extrinsic ones

because the intrinsic ones were found in a more favourable, and thus

accurate, setup. The average re-projection error achieved is less than

a pixel and more in-depth analysis of the overall scanner/simulator

accuracy is shown in Figure 17 (right).

The rotating stage calibration (see Figure 16, 5) is following the

same procedure with the only difference that the CharuCo board is

now placed in the rotating stage instead of on the linear one and

we are interested in reconstructing its axis of rotation based on the

reconstructed positions of CharuCo markers. We can reconstruct

the full frame of reference of the rotating stage by scanning a Pawn

calibration object with know ball height h (knowing the axis of

rotation is sufficient for the registration of scans from different

angles). This information will be useful later on to localize other

calibration objects.

Rendering. All parameters describing the scanner geometry are

measured in the hardware calibration and can be directly translated

to scene units and applied to the projector and object as rotations

and translations.

Fig. 5. From left to right: matte coated pawn, glossy coated pawn, matte
reconstruction, glossy reconstruction. The difference between the scanned
results is minor, the specularity of the material does not introduce artifacts
when HDR images are used for scanning.

Fig. 6. Absolute pixelwise difference before (left) and after (middle) running
the optimization for object position and orientation. White represents no
difference, black the maximal difference. The mean squared error between
the image from the physical setup and an initial guess decreases during the
optimization procedure (right).

1.5 Materials
So far, we focused on the geometric aspects of the scanner. To accu-

rately simulate images produced by the camera in a real-world setup,

one also has to perform a radiometric calibration of both camera and

the projector as well as match the material properties of the object

being scanned/rendered. We are using a digital camera sensor with

global shutter. We confirmed it has the expected linear radiometric

response (e.g. gamma=1.0). This is not the case for the projector,

so we acquired its response function 𝑟𝑃 experimentally. We also

calibrate the white balance of the projector and the vignetting for

both camera and projector lenses as this is a significant cause of

image brightness attenuation towards the borders.

We also evaluate the performance of the system for both matte

and glossy materials. The reconstruction results of a scan with matte

and glossy material coating are shown in Figure 5.

Getting material rendering right is heavily dependent on the

radiometric calibration of the setup. We are using a Spectralon® for

the calibration of the camera (𝑉𝐶) and projector (𝑉𝑃) vignetting. We

measure projector response function 𝑟𝑃 and white balance 𝐵𝑃 using

the same setup but with side lights off (Figure 4, 2). More details

can be found in Appendix B.5.

Rendering. Matching the materials of the physical and virtual

objects could be done by BRDF aquisition of the physical material.

However, as the material of the calibration objects is relatively

simple, we match it by choosing an equivalent material (Mitsuba

roughplastic material [Cook and Torrance 1982], Section 8.2.8 of the

documentation) and optimizing the relevant material parameters p

(roughness, interior index of refraction and diffuse reflectance) using

4

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

gradient descent and luminance difference (MSE) as a loss function.

For this, we acquired scans of a planar calibration object coated with

the same material as the other calibration objects. In addition to the

obtained material parameters, we measured the thickness d of the

coating and added this coating𝑑 = 0.075𝑚𝑚 to the calibration object

geometry before simulation. For the projector defocus calibration,

we used the planar calibration object scanned at two different angles

to the projector and ran the same optimization procedure to obtain

the matching values for projector aperture 𝑓𝑃 and focus distance

𝐹𝑃 .

Despite the extensive calibration, there might still be some dif-

ferences between the hardware scanner and the simulation due

to additional sources of noise that we did not account for, or lim-

itations in the physical models we use. We use the same gradient

descent optimization procedure to further refine other parameters

of the setup too (e.g. object localization). Figure 6 shows such an

optimization for finetuning of the position 𝑇𝑂 and orientation 𝑅𝑂
of a scanned object. For many parameters (such as aperture 𝑓𝐶 , 𝑓𝑃
and focus distance 𝐹𝐶 , 𝐹𝑃) the optimization procedure finds a local

minimum in less than 100 iterations. However, for optimizations

(e.g. of the object position 𝑇𝑂 and object rotation 𝑅𝑂) where the

initial guess is too far from an optimum or when there are too many

parameters optimized at once, it takes much longer or even runs

into unfavorable local minima. It is therefore important to start with

an adequate initial guess.

2 RELATED WORK
Our work uses Mitsuba [Jakob 2010], a physically based renderer,

with additions to support the simulation of a projector. Our contri-

bution is independent of particular mathematical approximations

of light transport or their computational implementation. We refer

an interested reader to [Pharr et al. 2016] for details on physically

based rendering techniques. Likewise, since we focus on pixel-wise

difference for measurement of such techniques, we note that [Ul-

bricht et al. 2006] offer a survey on other experimental validation

approaches for physically-based rendering techniques. For a survey

on reflectance (and geometry) acquisition we recommend [Wein-

mann and Klein 2015].

Scanning Hardware. The design of structured light 3D scanners

has been a topic of research for several decades. Starting in the early

2000s, assembling good quality scanners out of commodity parts was

a challenging but achievable task (see, e.g., Rocchini et al. [Rocchini

et al. 2001]). Lanman and Taubin’s SIGGRAPH course [Lanman

and Taubin 2009] (which includes open-source code) is an excellent

resource, and it has greatly simplified the process of building a

working 3D scanner. The common objective had been to optimize the

ratio of scanning quality and cost, and time investment required for

calibration. In this work, we build a scanner selecting components

with the unique goal of reducing the error relative to realistic image

synthesis. The process of building such a scanner-simulator pair,

detailed in Section 1, is challenging, and to the best of our knowledge,

has not been done.

Berger et al. [Berger et al. 2013] introduced a benchmark for sur-

face reconstruction algorithms. It included a synthetic 3D range

scanner that could be used to simulate different aspects of the scan-

ning process, such as varying the scanning noise and sampling rates.

To validate their synthetic scanner, they 3D printed a a single object

(the Gargoyle model) and scanned it with a physical scanner (a

NextEngine 3D Laser Scanner). They do not calibrate their synthetic
scanner to exactly match the NextEngine scanner, in part due to the

lack of details on the internals of the NextEngine scanner.

Medeiros et al. [Medeiros et al. 2014] present a benchmark for

structured light reconstruction algorithms with the goal of measur-

ing the effects of illumination artifacts, including projector defocus,

inter-reflections and subsurface scattering. They build a synthetic

simulator using photo-realistic rendering (implemented with PBRT)

that takes an object and its BRDF into account. They use their simu-

lator to compare the Gray code pattern [Lanman and Taubin 2009],

unstructured light scanning [Couture et al. 2011], micro phase shift-

ing [Gupta and Nayar 2012], and ensemble codes [Gupta et al. 2013].

They are interested in qualitatively matching some of the artifacts

typical of SLS, but their validation (described in the appendix) does

not attempt to achieve pixel-perfect matching. It directly compares

the synthetic scanner to one built with a Canon EOS Rebel T3i 18-

55mm camera, a Mitsubishi HC4000 HD projector, and they use the

software from Lanman and Taubin [Lanman and Taubin 2009] for

binary classification (projector illuminated versus non illuminated

areas).

Eiríksson et al. [Eiríksson et al. 2016] perform a set of experiments

to determine precision and accuracy of parameters for structured

light scanners. They are interested in determining the best cali-

bration parameters and encoding strategies. They build a scanner,

which they use for experiments of calibration parameters and en-

coding strategies. In their work, they use scenes with two different

types of canonical objects. They also benchmark their scanner with

a high-end commercial scanner (GOM ATOS III Triple Scan). Hol-

royd [Holroyd et al. 2010] propose a scanner to acquire geometry

and surface reflectance at very high resolution. Zhang et al. [Zhang

and Nayar 2006] analyze the effects of projector defocus in light

scanning scenes and propose a method to increase the effective

depth of field of scanning projectors.

In all these works, there is no attempt to create a digital twin in

the form of a accurately matching simulator.

Light Coding Strategies. Since the development of structured

light scanning, many light coding strategies have been proposed.

Slightly outdated survey papers from Salvi et al. [Salvi et al. 2010,

2004] give an overview of the many different techniques. Recent

light coding strategies [Couture et al. 2011; Gupta and Nakhate 2018;

Moreno et al. 2015] aim for robustness towards the common sources

of error in structured light scanning (interreflection, projector de-

focus, challenging materials). Another direction with similar goals

is the automatic generation of coding patterns while optimizing

the scanning accuracy. Mirdehghan et al [Mirdehghan et al. 2018]

generate optimized patterns for a given scanner setup to minimize

the correspondence errors. Chen et al. [Chen et al. 2020] optimize

the coding-decoding procedure by modifying the projected patterns

for arbitrary SLS setups in an automatic manner. The camera and

projector setup is treated as a blackbox which is contrary to our

approach of modeling the full setup. Instead of using high accuracy

5

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Fig. 7. From left to right: Shapes object illuminated with unstructured light
patterns (40 patterns of frequency 0.1) from physical scanner, simulation, de-
coded lookup table from physical scan, decoded lookup table from simulated
scans.

Fig. 8. From left to right: Shapes object illuminatedwithmicro phase shifting
patterns (32/8 frequency pattern) from physical scanner, simulation, decoded
horizontal indices from physical scan, decoded horizontal indices from
simulated scans.

objects for the purpose of objectively quantifying reconstruction

errors (in SI units), their method relies on the same reconstruction

technique (but with more patterns) for ground truth estimation.

This does not permit the unbiased quantification of reconstruction

errors. Our work is thus orthogonal to their direction and enables

further research in light coding strategies.

Synthesis of Realistic Images. In terms of side-by-side compar-

isons between rendered and photographed images, Phong’s [Phong

1975] seminal paper was first in using visual comparison of the

rendered image of a sphere to a photograph to highlight the quality

of his shading model. Meyer et al. [Meyer et al. 1986] performs two

detailed studies: comparing radiometric measurements between

physical and rendered models, and a perceptual study comparing

rendered images shown on a color TVmonitor to the physical model

using the Cornell Box [Goral et al. 1984]. Pattanaik et al. [Pattanaik

et al. 1997] calibrates a CCD camera to compare real and synthetic

imagery of the Cornell Box, and attribute image differences to “mis-

match between the numerical description of the scene geometry and

the actual geometry”. We are not aware of any existing work able

to achieve a faithfulness comparable to our approach, especially on

geometrically complex objects.

The problem of designing a perceptual model to compare real and

synthetic images has been pioneered by Rushmeier et al. [Rushmeier

et al. 1995]. In our setting, we opt for direct pixel-wise difference as

our goal is to generate replicas of images to faithfully simulate a 3D

reconstruction instead of producing perceptually similar images.

Hannemose et al. [Hannemose et al. 2020] propose a method

for aligning photographs with rendered images, targeting settings

where scanner and camera calibration are not available. Their goal is

to support development of appearance models through quantitative

validation. They let the user initialize the approximate orientation

Fig. 9. Difference between the ground truth depth and the reconstructed
depth for a test simulated scene with a smooth NURBS surface. From left
to right: Ground truth depth map, reconstructed depth map, difference
between the depth maps. The difference image shows the discretization
artifacts that are produced by the Gray code patterns.

of the object relative to the planar surface, and then estimates the

light source position and the camera and object poses. They validate

their method using 3d printed models, showing good alignment

between the acquired and rendered images. This technique is not

required in our setting, where we have control over both camera

and projector. We can accurately calibrate the scanning system and

recover an object’s position directly from the reconstructed point

cloud.

3 ADDITIONAL ACCURACY EXPERIMENTS
We provide additional experiments to evaluate the scanner, corre-

sponding simulator and reconstruction accuracy.

3.1 Correspondence Accuracy
We repeat the same experiment as proposed in the main paper

with unstructured light (see Figure 7) and micro phase shifting

(see Figure 8) coding patterns. Note that these patterns lead to less

holes in the correspondence map, especially on inclined faces and

regions with prominent subsurface scattering and interreflection.

Similar to the Gray code results, the calculated correspondences

from real and simulated images are almost identical, confirming

that our simulation is accurate.

3.2 Reconstruction Accuracy
We want to evaluate the maximally achievable accuracy from the

structured light scanning process given certain projection patterns.

For this, we compare the ground truth depth map from simulation to

the reconstructed depth map acquired from simulation renderings

and subsequent decoding and reconstruction procedures. Figure 9

demonstrates the discretization artifacts that are introduced by using

Gray code patterns which produce integer encoded pixel correspon-

dences and therefore staircase artifacts after reconstruction. Other

light scanning patterns such as unstructured light or microphase

shifting produce continuous pixel correspondences and therefore

no such artifacts. Besides the mitigation of artifacts, these optimized

patterns have other advantages over standard Gray code patterns

such as higher precision under defocusing and light interreflection

effects. With the close pixel-wise matching of the simulated images

to images from the scanner (as demonstrated for example in Fig-

ure 1) and the ground truth depth maps, our simulator serves as an

ideal testbed for developing and evaluating optimal structured light

scanning patterns.

6

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Fig. 10. Geometric accuracy of the camera (left) and projector (right) models
in our simulation. Displayed are the displacements (in camera pixels) of the
detected corners for the CharuCo calibration board (camera) and projected
checker pattern (projector) for a captured image and its simulated equivalent.
There is no significant systematic bias observed and displacements are
isotropic (most errors stem from corner detection).

3.3 Simulation Accuracy
The high accuracy of our system has been achieved by controlling

the lighting setup and restricting the choice of materials. Despite

its apparent simplicity, we believe this is an important setting, as

it allows to establish a baseline performance for 3D reconstruction

methods tailored to structured-light scanning.

To ensure that there are no systematic errors introduced during

the calibration procedure, we validate our camera and projectormod-

els. For the validation of geometric accuracy, we project a checker

pattern onto the CharuCo calibration board placed at the focus dis-

tance of the projector. The position of the calibration board can be

easily reconstructed (with high accuracy) from the detected mark-

ers by solving a PnP problem and it is used as ground truth for

investigation of simulation errors (Figure 10).

We also validate the defocus models for both camera and projec-

tor simulation. To achieve close agreement with calibration data

(Figure 11), we had to incorporate effects such as diffraction limit

and chromatic aberration into our simulation. For diffraction, we

estimate the Airy disk size (in angle units) and multiply it by a

manufacturing tolerance factor to obtain the 𝐷𝐶 parameter. The

multiplication factor is adjusted until a good agreement is achieved

between the calibration measurements and the equivalent simula-

tion. Projector diffraction is based on camera calibration adjusted

for the larger aperture of the projector. However, such a model is

not sufficient for the projector as it exhibits a higher degree of chro-

matic aberrations which, surprisingly, results in a wider depth of

field when imaging with a monochrome camera. To simulate that,

we introduce a second optimization parameter 𝐸𝑃 that controls mod-

ulation (using a sigmoid-like function) of the projector’s aperture

depending on how far away from the focal plane the illuminated

point/object is. More details can be found in the comments to the

simulator’s source code and the validation scripts are located in

simulator/validation folder of the software repository.

Because all steps of our geometric calibration are performed with

errors less than 100𝜇𝑚 and radiometric calibration is accurate down

to several percent (see appendices for more detail), we are able to

quantify different sources or errors in SLS. For instance, we were

Fig. 11. Camera (left) and projector (right) resolution as a function of dis-
tance to their corresponding apertures. Our simulation models are in good
agreement with values measured during calibration (see Appendix B.3) of
focus distance for both camera and projector.

able to estimate, quantitatively, the effect of global illumination due

to the secondary light scattering of the rotating stage supporting

the scanned object (Figure 1). Moreover, the high resolution of our

setup (one camera pixel corresponds to ≈ 65𝜇𝑚 on objects surface)

revealed that effects, such as gaps between individual micro-mirrors

of the projector (one projector pixel corresponds to ≈ 200𝜇𝑚 on

objects surface), introduce noise greater than image sensor noise,

and even more so for material surface microstructure in specular

regions (Figure 12). This illustrates the hidden biases of many of

the previous sim2real approached that do not dedicate enough at-

tention to validation of their simulation techniques and simplifying

assumptions. Our results also demonstrate the lower bound on what

simulation accuracy is achievable, even in a very simple setup, with-

out resorting to extreme measures like simulating internal structure

of the light sources or accounting for thermal expansion.

A potential improvement to our simulator is inclusion of the vary-

ing blur kernels for projector defocus simulation. Projector focus

and aperture calibration stage revealed that the defocus pattern for

projector pixels changes across the projected image and with dis-

tance away from the focal plane. It is the largest remaining source of

errors in our simulator. However, accurate simulation of this effect

would complicate the calibration procedure significantly. Extending

our work to more realistic lighting setups and to materials with

non negligible subsurface scattering is an exciting avenue for future

work too.

4 TECHNICAL DETAILS ON THE BENCHMARK
BASELINES

4.1 Denoising
Inspired by other depth denoising [Yan et al. 2018] and image-to-

image translation approaches [Isola et al. 2017], the denoising net-

work follows the shape of a U-Net [Ronneberger et al. 2015]. As we

aim to remove small-scale noise, we assume that the depth from the

reconstruction process is already close to the ground truth depth.

Thus, our network does not predict an absolute depth but an offset
from the reconstruction, which spares it from having to learn the

identity mapping. The encoder part consists of eight 4 × 4 convolu-

tion layers with stride 2 each followed by an instance normalization

layer [Ulyanov et al. 2017] (except for the first one) and leaky ReLU

activation. The first convolutional layer outputs 64 features and the

number of output features is doubled with each consecutive layer.

The decoder mirrors the encoder but uses plain ReLU activations.

7

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Real Simulated Mask Difference

Fig. 12. From left to right: close-up view of the highlighted red region of Figure 1 with corresponding rendering/simulation in non-inverted colors. The error
threshold for the mask image (5%) and the scale of difference images are the same as on Figure 1. The remaining error sources include gaps between projector
pixels (≈ 2%, highlighted red), minor misalignment and difference in projector defocus around sharp transitions (up to 20%, highlighted green), and material
surface microstructure in specular regions (about 5 − 10%, highlighted cyan). Relative sensor noise in the camera image is negligible (< 3% for dark regions)
because of HDR image capture and, therefore, is not simulated.

We follow the implementation of [Isola et al. 2017] but replace the

transpose convolutions in the decoder with 3×3 resize convolutions

to avoid checkerboard artifacts in the generated output [Odena et al.

2016]. After the final layer, a scaled tanh activation function pro-

duces values in the range of ±10mm. This offset is then added to

the input depth.

We do not train on the full resolution but use random crops of size

256 × 256 to stay within reasonable memory bounds. The training

objective is the L1 loss between the predicted depth and the ground

truth, calculated only over regions containing a valid reconstruction.

We use the Adam optimizer [Kingma and Ba 2015] with a constant

learning rate of 0.0001 and train for 20000 epochs. For inference

on a full resolution depth map, we split the input into overlapping

tiles that are processed individually and then merged back into the

image grid.

While our simple model by no means is a flawless denoiser, it

shows that our simulation of the scanning process can provide data

for tasks that previously could not even be quantified accurately. In

particular, the submillimeter errors and noise patterns of the scan-

ning process seem to follow very interesting dynamics (Figure 13).

REFERENCES
Matthew Berger, Joshua A. Levine, Luis Gustavo Nonato, Gabriel Taubin, and Claudio T.

Silva. 2013. A Benchmark for Surface Reconstruction. ACM Trans. Graph. 32, 2,
Article 20 (April 2013), 17 pages. https://doi.org/10.1145/2451236.2451246

G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).
Wenzheng Chen, Parsa Mirdehghan, Sanja Fidler, and Kiriakos N. Kutulakos. 2020.

Auto-Tuning Structured Light by Optical Stochastic Gradient Descent. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM
Trans. Graph. 1, 1 (Jan. 1982), 7–24. https://doi.org/10.1145/357290.357293

V. Couture, N. Martin, and S. Roy. 2011. Unstructured light scanning to overcome

interreflections. In 2011 International Conference on Computer Vision. 1895–1902.
https://doi.org/10.1109/ICCV.2011.6126458

Paul E. Debevec and Jitendra Malik. 1997. Recovering High Dynamic Range Radiance

Maps from Photographs. In Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley

Publishing Co., New York, NY, USA, 369–378. https://doi.org/10.1145/258734.258884

E. R. Eiríksson, J. Wilm, D. B. Pedersen, and H. Aanæs. 2016. Precision and Accuracy

Parameters in Structured Light 3-D Scanning. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences XL5 (April 2016),
7–15. https://doi.org/10.5194/isprs-archives-XL-5-W8-7-2016

S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez.

2014. Automatic generation and detection of highly reliable fiducial markers under

occlusion. Pattern Recognition 47, 6 (2014), 2280 – 2292. https://doi.org/10.1016/j.

patcog.2014.01.005

Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. 1984.

Modeling the Interaction of Light between Diffuse Surfaces. SIGGRAPH Comput.

Graph. 18, 3 (Jan. 1984), 213–222. https://doi.org/10.1145/964965.808601

Mohit Gupta, Amit Agrawal, Ashok Veeraraghavan, and Srinivasa G. Narasimhan.

2013. A Practical Approach to 3D Scanning in the Presence of Interreflections,

Subsurface Scattering and Defocus. Int. J. Comput. Vision 102, 1–3 (March 2013),

33–55. https://doi.org/10.1007/s11263-012-0554-3

M. Gupta and N. Nakhate. 2018. A Geometric Perspective on Structured Light Coding.

In ECCV.
Mohit Gupta and Shree K. Nayar. 2012. Micro Phase Shifting. In CVPR. 813–820.

https://doi.org/10.1109/CVPR.2012.6247753

Morten Hannemose, Mads Emil Brix Doest, Andrea Luongo, Søren Kimmer Schou

Gregersen, Jakob Wilm, and Jeppe Revall Frisvad. 2020. Alignment of rendered

images with photographs for testing appearance models. Appl. Opt. 59, 31 (Nov
2020), 9786–9798. https://doi.org/10.1364/AO.398055

Michael Holroyd, Jason Lawrence, and Todd E. Zickler. 2010. A coaxial optical scanner

for synchronous acquisition of 3D geometry and surface reflectance. ACM Trans.
Graph. 29, 4 (2010), 99:1–99:12. https://doi.org/10.1145/1778765.1778836

Chika Inoshita, Seiichi Tagawa, Md Mannan, Yasuhiro Mukaigawa, and Yasushi Yagi.

2013. Full-dimensional sampling and analysis of BSSRDF. IPSJ Transactions on
Computer Vision and Applications 5 (07 2013), 119–123. https://doi.org/10.2197/

ipsjtcva.5.119

P. Isola, J. Zhu, T. Zhou, and A. A. Efros. 2017. Image-to-Image Translation with

Conditional Adversarial Networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 5967–5976. https://doi.org/10.1109/CVPR.2017.632

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann

LeCun (Eds.). http://arxiv.org/abs/1412.6980

Douglas Lanman and Gabriel Taubin. 2009. Build your own 3D scanner: optical tri-

angulation for beginners. In International Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ASIA 2009, Yokohama, Japan, December 16-19,
2009, Courses Proceedings. ACM. https://doi.org/10.1145/1665817.1665819

Esdras Medeiros, Harish Doraiswamy, Matthew Berger, and Claudio T. Silva. 2014.

Using physically Based Rendering to Benchmark Structured Light Scanners. Com-
puter Graphics Forum 33, 7 (2014), 71–80. https://doi.org/10.1111/cgf.12475

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12475

Gary W. Meyer, Holly E. Rushmeier, Michael F. Cohen, Donald P. Greenberg, and

Kenneth E. Torrance. 1986. An Experimental Evaluation of Computer Graphics

Imagery. ACM Trans. Graph. 5, 1 (1986), 30–50. https://doi.org/10.1145/7529.7920

Parsa Mirdehghan, Wenzheng Chen, and Kiriakos N. Kutulakos. 2018. Optimal Struc-

tured Light a la Carte. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 6248–6257. https://doi.org/10.1109/CVPR.2018.00654

Daniel Moreno, Kilho Son, and Gabriel Taubin. 2015. Embedded phase shifting: Robust

phase shifting with embedded signals. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2301–2309. https://doi.org/10.1109/CVPR.2015.

7298843

Augustus Odena, Vincent Dumoulin, and Chris Olah. 2016. Deconvolution and Checker-

board Artifacts. Distill (2016). https://doi.org/10.23915/distill.00003

Sumanta N. Pattanaik, James A. Ferwerda, Kenneth E. Torrance, and Donald P. Green-

berg. 1997. Validation of Global Illumination Simulations through CCD Camera

Measurements. In 5th Color and Imaging Conference, CIC 1997, Scottsdale, Arizona,
USA, November 17-20, 1997. IS&T - The Society for Imaging Science and Technology,

250–253. http://www.ingentaconnect.com/content/ist/cic/1997/00001997/00000001/

art00049

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San

8

https://doi.org/10.1145/2451236.2451246
https://doi.org/10.1145/357290.357293
https://doi.org/10.1109/ICCV.2011.6126458
https://doi.org/10.1145/258734.258884
https://doi.org/10.5194/isprs-archives-XL-5-W8-7-2016
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1145/964965.808601
https://doi.org/10.1007/s11263-012-0554-3
https://doi.org/10.1109/CVPR.2012.6247753
https://doi.org/10.1364/AO.398055
https://doi.org/10.1145/1778765.1778836
https://doi.org/10.2197/ipsjtcva.5.119
https://doi.org/10.2197/ipsjtcva.5.119
https://doi.org/10.1109/CVPR.2017.632
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1665817.1665819
https://doi.org/10.1111/cgf.12475
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12475
https://doi.org/10.1145/7529.7920
https://doi.org/10.1109/CVPR.2018.00654
https://doi.org/10.1109/CVPR.2015.7298843
https://doi.org/10.1109/CVPR.2015.7298843
https://doi.org/10.23915/distill.00003
http://www.ingentaconnect.com/content/ist/cic/1997/00001997/00000001/art00049
http://www.ingentaconnect.com/content/ist/cic/1997/00001997/00000001/art00049

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Fig. 13. Reconstruction errors for several virtual scans of LSD objects and a
real scan of the rook (bottom row).

Francisco, CA, USA.

Bui Tuong Phong. 1975. Illumination for Computer Generated Pictures. Commun. ACM
18, 6 (1975), 311–317. https://doi.org/10.1145/360825.360839

Claudio Rocchini, Paolo Cignoni, Claudio Montani, Paolo Pingi, and Roberto Scopigno.

2001. A low cost optical 3D scanner. Comput. Graph. Forum 20, 3 (2001).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional

Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, Nassir Navab, Joachim Hornegger,

William M. Wells, and Alejandro F. Frangi (Eds.). Springer International Publishing,

Cham, 234–241.

Holly E. Rushmeier, Gregory J. Ward, Christine D. Piatko, Phil Sanders, and BertW. Rust.

1995. Comparing Real and Synthetic Images: Some Ideas about Metrics. In Rendering
Techniques ’95, Proceedings of the Eurographics Workshop in Dublin, Ireland, June

12-14, 1995 (Eurographics), Pat Hanrahan and Werner Purgathofer (Eds.). Springer,

82–91. https://doi.org/10.1007/978-3-7091-9430-0_9

Joaquim Salvi, Sergio Fernandez, Tomislav Pribanic, and Xavier Llado. 2010. A state of

the art in structured light patterns for surface profilometry. Pattern Recognition 43,

8 (2010), 2666–2680. https://doi.org/10.1016/j.patcog.2010.03.004

J. Salvi, J. Pagès, and J. Batlle. 2004. Pattern codification strategies in structured light

systems. Pattern Recognit. 37 (2004), 827–849.
K. Sato and S. Inokuchi. 1985. Three-dimensional surface measurement by space

encoding range imaging. Journal of Robotic Systems 2 (Jan. 1985), 27–39.
Christiane Ulbricht, Alexander Wilkie, and Werner Purgathofer. 2006. Verification

of Physically Based Rendering Algorithms. Comput. Graph. Forum 25, 2 (2006),

237–255. https://doi.org/10.1111/j.1467-8659.2006.00938.x

D. Ulyanov, A. Vedaldi, and V. Lempitsky. 2017. Improved Texture Networks: Maxi-

mizing Quality and Diversity in Feed-Forward Stylization and Texture Synthesis. In

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 4105–4113.
https://doi.org/10.1109/CVPR.2017.437

Michael Weinmann and Reinhard Klein. 2015. Advances in geometry and reflectance

acquisition (course notes). In SIGGRAPH Asia 2015 Courses, Kobe, Japan, November
2-6, 2015. ACM, 1:1–1:71. https://doi.org/10.1145/2818143.2818165

Shi Yan, Chenglei Wu, Lizhen Wang, Feng Xu, Liang An, Kaiwen Guo, and Yebin

Liu. 2018. DDRNet: Depth Map Denoising and Refinement for Consumer Depth

Cameras Using Cascaded CNNs. In Computer Vision – ECCV 2018, Vittorio Ferrari,

Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer International

Publishing, Cham, 155–171.

Li Zhang and Shree Nayar. 2006. Projection Defocus Analysis for Scene Capture and

Image Display. In ACM SIGGRAPH 2006 Papers (Boston, Massachusetts) (SIGGRAPH
’06). Association for Computing Machinery, New York, NY, USA, 907–915. https:

//doi.org/10.1145/1179352.1141974

Z. Zhang. 2000. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22, 11 (2000), 1330–1334. https://doi.org/

10.1109/34.888718

A HARDWARE GUIDE
In this Appendix, we describe in detail the specific hardware choices

we made (A.1) and the software component necessary to operate

the setup (A.2). The source code and design files are hosted at https:

//github.com/geometryprocessing/scanner-sim.

A.1 Physical Setup
A detailed bill of materials, the CAD models, the schematics of the

calibration objects, and the schematics for the portable setup rig can

be found in the scanner/hardware folder of the software repository.

Here, we highlight the most important parameters of our hardware

components.

Calibration Objects. We purchased a 400x300 mm CharuCo cali-

bration board with 18x25 checkers 𝑆𝐶 = 15𝑚𝑚 in size (fine pattern)

from Calib.io. For the linear stage, we used a 400 mm long linear

stage by Beauty Star from Amazon with STEPPERONLINE DM332T

motor driver also from Amazon. We implement a motor controller

using a Texas Instruments Tiva C Microcontroller. A 300x300 mm

Spectralon®is purchased from Edmund Optics.

For the scanning objects, we develop a protocol to obtain high

accuracy via CNC milling and a uniform diffuse coating. The objects

(Figure 14) are fabricated with a geometric tolerance of 50𝜇𝑚. We

would like to emphasize that the effort to fabricate objects with such

a low geometric tolerance is necessary to obtain pixel-wise image

reproduction, as the objects will be used in a differentiable rendering

pipeline to fine tune the simulator parameters (Section 1.5). To the

best of our knowledge, the idea of using complex fabricated objects

to calibrate the parameters of a 3D scanner has not been explored

before.

Camera. We choose the following camera configuration:

9

https://doi.org/10.1145/360825.360839
https://doi.org/10.1007/978-3-7091-9430-0_9
https://doi.org/10.1016/j.patcog.2010.03.004
https://doi.org/10.1111/j.1467-8659.2006.00938.x
https://doi.org/10.1109/CVPR.2017.437
https://doi.org/10.1145/2818143.2818165
https://doi.org/10.1145/1179352.1141974
https://doi.org/10.1145/1179352.1141974
https://doi.org/10.1109/34.888718
https://doi.org/10.1109/34.888718
https://github.com/geometryprocessing/scanner-sim
https://github.com/geometryprocessing/scanner-sim
https://calib.io/collections/products/products/charuco-targets?variant=9400454905903
https://www.amazon.com/s?k=Beauty+Star+linear+stage+400mm
https://www.amazon.com/s?k=STEPPERONLINE+dm332t
https://www.ti.com/tool/EK-TM4C123GXL
https://www.edmundoptics.com/search/?criteria=58-612

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Fig. 14. The highly accurate objects that we use for calibration and valida-
tion of the scanner. From left to right: Rook Pawn, Shapes, and Flat.

• Sensor : Sony IMX342 CMOS Monochrome (𝐶𝐶) with resolu-

tion (𝑊𝐶 x 𝐻𝐶) of 6464 x 4852 pixels and pixel size 3.45𝜇𝑚

(Atlas 31.4 MP Model by Lucid Vision Labs).

• Lens: Edmund Optics TFL-Mount APS-C 50 mm lens with

supported aperture in f/1.8–f/16 range (Edmund Optics).

The resulting resolution at 𝐹𝐶 = 810mm focus distance (this

parameter is fine-tuned in Section 1.3) for the camera in our setup

is ≈ 65 µm/pixel with contrast of 50% and aperture 𝑓 /12.5 (see

Figure 15, left). The f-stop of 𝑓 /12.5, corresponding to an aperture

diameter 𝑓𝐶 = 4mm, was chosen to maximize the depth of view for

the camera without sacrificing the camera resolution (due to the

lens diffraction at smaller f-numbers).

Lights. We settle on Texas Instruments DLP4710EVM-LC Light

Control Evaluation Module as our light source. It is capable of

projecting a 320 x 180 mm Full HD image at the focus distance

𝐹𝑃 = 490mm, resulting in a spatial resolution of roughly 165 µm/pixel
with contrast greater than 150%. We did not use a “4k” projector as,

during the development of this project, there were no commercially

available ones with a DMD device at 4k resolution, despite many of

them being advertised as 4k projectors.

Note that a DLP projector avoids color bleeding and the mono-

chrome camera also reduces this potential problem. Color scans can

be achieved by measuring R/G/B wavelengths independently. We

did not observe any significant lens aberrations (in particular in

the central region of the projected image used for scanning). We

also use a x4 neutral filter for the projector to reduce its brightness

as we use it at a close range and the camera has a lower bound on

exposure time. Ambient lighting is modeled by surrounding the

setup with semitransparent diffuse fabric from a standard soft-box

light system.

Scanner Geometry. We build a custom frame to keep the cam-

era and the projector locked in the desired position for consistent

calibration parameters across multiple scans (see Figure 2). We use

an off-the-shelf HP Turntable Pro for scanning the objects from

multiple view angles. The entire setup is enclosed by a black or

semitransparent and diffuse white covering to emulate black box or

diffuse ambient lighting.

Materials. The objects are fabricated using 3D Hubs with their

surface finish option of matte white powder coating for part of the

objects. The remaining objects were coated manually using Rust-

Oleum Ultra Matte White paint (Amazon). In addition, we coat the

pawn object with Winsor & Newton gloss varnish (Amazon) to

evaluate the performance of the system for glossy materials.

A.2 Software Package
Software package for operation of the physical scanner setup can

be found in scanner/capture folder of the software repository.

Configuration. The scanner software is dependent on camera

and projector drivers. ArenaSDK with Python API needs to be in-

stalled in the system to operate the camera sensor and DLPDLC-GUI

tool for projector configuration. Additionally, network drivers of

the Thunderbolt to 5GBASE-T Ethernet adapter (e.g. Amazon) used

to connect the camera sensor to the PC are required if the system

does not natively support high-speed network connectivity. It is im-

portant to enable Jumbo packets support and increase transmission

buffers size in the network driver settings to ensure stable image

capture at full speed. Also, one should maintain the same color tem-

perature settings in DLPDLC-GUI tool when adjusting the projector

brightness.

Turntable and Linear Stage both have standard COM interface

(see stage.py) and, thus, do not require any additional drivers be-

sides Serial Python package for operation. Additionally, OpenGL

and OpenEXR packages are required for pattern display(.py) and

HDR(.py) image processing. The software was tested on the Win-

dows operating system with Python versions 3.7 and 3.9.

Data Capture. The camera component (capture.py) is designed to

capture single-exposure raw LDR images as well as multi-exposure

HDR images. The latter is dependent on dark frames that need

to be captured in advance (with the lens cap installed) using the

capture_dark_frames function in capture.py and processed using

the generate_dark_frames function in utils/hdr.py. The final dark

frames for typical exposure values and our sensor of choice can be

found in the calibration/camera_instrinsics/dark_frames data folder.

All the scanner components (camera, projector, stage and user

input) are being serviced independently in their own threads so

that the main thread can be used to process user commands, in-

cluding, among others, exposure or data output folder selection,

loading/displaying of a pattern and ldr/hdr image capture. To ac-

complish a complete object scan with a set of decoding patterns

(grayscale, microphase shifting etc) for different object positions

(stage rotation) we introduce support for scripting of data acqui-

sition, that is, a group of individual commands stored in *.script

file can be loaded and executed one-by-one with a single “script”

command. Examples of such scripts can be found in the “scripts”

subfolder. Scripts executed form within another script should be

loaded using “subscript” command to prevent the overload of “prefix”

command that defines the output save folder. The “suffix” command

can be used instead to define subfolders for different collections of

patterns.

We use the gen_* functions from scan.py to generate commonly

used script such as a scan for camera calibration (gen_calibration

_script) or a script for complete scan of an object using multiple pat-

terns (gen_multiscan_script). Other commands defined in scan.py

include the “move” command for controlling the stage and vari-

ous pattern display commands (e.g. “checker”, “color”, “load” etc).

10

https://thinklucid.com/product/atlas-31-mp-imx342/
https://thinklucid.com/product/edmund-optics-tfl-mount-aps-c-50mm-f-1-8/
https://www.ti.com/tool/DLP4710EVM-LC
https://www8.hp.com/us/en/campaign/3Dscanner/overview.html#accessories
https://www.3dhubs.com/
https://www.amazon.com/s?k=Rust-Oleum+Ultra+Matte+White
https://www.amazon.com/s?k=Winsor+Newton+Gloss+Varnish
https://thinklucid.com/arena-software-development-kit
https://www.ti.com/tool/DLPDLC-GUI
https://www.amazon.com/s?k=Cable+Matters+Thunderbolt+3+10G+Ethernet+Adapter

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Table 1. Parameters of our hardware setup, notation used, and references
to the sections where they are defined and calibrated. Positions 𝑇𝑖 and
orientations 𝑅𝑖 are defined in the camera’s frame of reference. N/A stands
for values fixed by the hardware choice that do not require calibration or
measurement.

Parameter Not. Def. Cal. Units

Calibration Objects
CharuCo checker size 𝑆𝐶 1.1 N/A mm

Pawn ball height h 1.1 N/A mm

Coating thickness d 1.1 B.1 𝜇𝑚

Camera
Image width 𝑊𝐶 1.2 N/A pixels

Image height 𝐻𝐶 1.2 N/A pixels

Color range 𝐶𝐶 1.2 N/A components

Calibration matrix 𝑀𝐶 1.2 B.2 3x3 matrix

Distortion coefficients 𝑑𝐶 1.2 B.2 5-vector

Optimal calibration mat. 𝑀𝐶𝑂 1.2 B.2 3x3 matrix

Aperture (diameter) 𝑓𝐶 1.2 B.2 mm

Focus distance 𝐹𝐶 1.2 B.3 mm

Diffraction limit 𝐷𝐶 3.3 3.3 degrees

Vignetting 𝑉𝐶 1.2 B.5 𝑊𝐶 x 𝐻𝐶 image

Projector
Image width 𝑊𝑃 1.3 N/A pixels

Image height 𝐻𝑃 1.3 N/A pixels

Color range 𝐶𝑃 1.3 N/A components

Projected checker size 𝑆𝑃 1.3 N/A pixels

Calibration matrix 𝑀𝑃 1.3 B.3 3x3 matrix

Distortion coefficients 𝑑𝑃 1.3 B.3 5-vector

Optimal calibration mat. 𝑀𝑃𝑂 1.3 B.3 3x3 matrix

Aperture (diameter) 𝑓𝑃 1.3 B.3 mm

Focus distance 𝐹𝑃 1.3 B.3 mm

Extra depth of field 𝐸𝑃 3.3 3.3 mm

Vignetting 𝑉𝑃 1.3 B.5 𝑊𝑃 x 𝐻𝑃 image

Response function 𝑟𝑃 1.3 B.5 scalar function

White balance 𝐵𝑃 1.3 B.5 3-vector

Position 𝑇𝑃 1.4 B.4 3-vector, mm

Orientation 𝑅𝑃 1.4 B.4 3x3 matrix

Stage
Position 𝑇𝑆 1.4 B.4 3-vector, mm

Orientation 𝑅𝑆 1.4 B.4 3x3 matrix

Objects
Position 𝑇𝑂 1.4 B.5 3-vector, mm

Orientation 𝑅𝑂 1.4 B.5 3x3 matrix

Material parametrization p 1.5 B.5 n-vector

We refer the user to the source code for more details on the input

parameters of these commands.

B PARAMETERIZATION AND CALIBRATION
Here, we describe the parameterization and calibration of the hard-

ware components in details. We first define each parameter for every

component of the system. Then, we describe the setup and calibra-

tion procedure used to measure them. We also provide pointers to

the corresponding code in the supplementary material for each of

these calibration techniques.

A comprehensive list of all the parameters used to define a virtual

copy of the physical scanner is available in Table 1. The code for

calibration is located in the scanner/calibration directory of the

software repository. All the data can be found at https://archive.nyu.

edu/handle/2451/62251.

B.1 Calibration Objects
Parametrization. The parameters of calibration objects used dur-

ing the calibration of the other components of the setup as well as

during simulation are: Camera calibration checker size 𝑆𝐶 equal to

15 mm (CharuCo board checker size), the height h of the Pawn’s
ball (center point) above its base, and coating thickness d for the

spray painted objects.

Calibration. We measure the thickness of the spray painted coat-

ing using a micrometer for the Flat object before and after applying

the coating, and it amounted to 𝑑 = 75𝜇𝑚. The powder coated

objects (i.e. Rook) have guaranteed tolerances of ≈ 50𝜇𝑚 by the

manufacturer which is ideal for validation purposes. The known

geometry of the (spray painted) Pawn object (e.g. the height h of

the top ball above the base) is also used to complete the calibration

of the rotating stage (see Section B.4).

CodeReference. CADmodels of calibration objects can be found

in the scanner/hardware/calibration_objects folder of the software

repository.

B.2 Camera
Parametrization. The camera is parametrized by: image resolu-

tion𝑊𝐶 × 𝐻𝐶 , number of color components𝐶𝐶 , aperture 𝑓𝐶 , intrin-

sic parameters (calibration matrix 𝑀𝐶 and distortion coefficients

𝑑𝐶), focus distance 𝐹𝐶 and vignetting 𝑉𝐶 . Some parameters follow

from the choice of hardware (e.g. camera image resolution, num-

ber of color components, and aperture size). We will now discuss

calibration of the intrinsic parameters, and postpone the remaining

ones to later stages, as they require additional hardware.

We also use an additional camera calibration matrix 𝑀𝐶𝑂 ob-

tained using the OpenCV::getOptimalNewCameraMatrix function

in the OpenCV [Bradski 2000] library. 𝑀𝐶𝑂 is used in the simula-

tor, while the combination of 𝑀𝐶 and 𝑑𝐶 are used to remove the

distortion of the acquired images and for calibration.

Calibration. The geometric calibration of the intrinsic camera

parameters (camera matrix 𝑀𝐶 and distortion coefficients 𝑑𝐶) is

done using the standard OpenCV [Bradski 2000] implementation of

Zhang et al. [2000]. We use 65 images for the initial pass to find the

initial reprojection errors for each image and then refine the calibra-

tion by running the algorithm again only for the images (31 total)

with initial average reprojection error lower than 0.9 pixels. The

resulting refined camera reprojection errors are shown in Figure 15

(right). The images were taken by fixing the camera one meter above

the table with the lights on and moving the CharuCo calibration

11

https://archive.nyu.edu/handle/2451/62251
https://archive.nyu.edu/handle/2451/62251

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Fig. 15. Camera resolution at 𝐹𝐶 = 81 cm focus distance and aperture
𝑓 /12.5 (left) is ≈ 65 µm/pixel (lines 2-3) with contrast of 50%. The measure-
ment was made using a USAF 1951 resolution test pattern. The reprojection
errors during calibration of the intrinsic camera parameters (𝑀𝐶 and 𝑑𝐶)
using the CharuCo board are shown on the right. Average reprojection error
is 0.62 pixels.

board slowly (to reduce the motion blur) while keeping close to the

focus distance of the camera.

Code Reference. The intrinsic camera calibration is performed

with the calibrate_intrinsic function from the camera.py script. It

takes a data path with CharuCo images (camera_intrinsics/data/

charuco) and re-projection error threshold as an input. The CharuCo

images have to be first preprocessed with the utils/detect.py script

to detect the markers and locate their corresponding corners. The

intermediate results will be stored in the “detected” subfolder.

B.3 Projector
Parametrization. The projector is parametrized by the same pa-

rameters as the camera (with the 𝑃 subscript): projected pattern

resolution resolution𝑊𝑃 × 𝐻𝑃 , number of color components 𝐶𝑃 ,

aperture 𝑓𝑃 , intrinsic parameters (calibration matrix𝑀𝑃 and distor-

tion coefficients 𝑑𝑃), focus distance 𝐹𝑃 , and vignetting𝑉𝑃 . Addition-

ally, the projector has a non-linear response function 𝑟𝑃 . In later

stages, we project a regular checkerboard using the projector: the

size of the checker size is 𝑆𝑃 is fixed at 100 pixels.

Calibration. Calibration of the intrinsic parameters (𝑀𝑃 and 𝑑𝑃)

for the projector is based on the camera calibration. We use a special

setup (Figure 16, a) with the camera positioned behind the projec-

tor so that their focus plane matches. We then use the linear stage

to move the calibration board with 5 mm steps and capture three

images for each stop with the projector projecting (1) a black im-

age, (2) a white image, and (3) a checker pattern image, all three

with ambient (room) lights turned on. Then the black image is used

to reconstruct the position of the CharuCo board and the rest are

combined as 𝑐𝑙𝑒𝑎𝑛 = (𝑐ℎ𝑒𝑐𝑘𝑒𝑟 − 𝑏𝑙𝑎𝑐𝑘)/(𝑤ℎ𝑖𝑡𝑒 − 𝑏𝑙𝑎𝑐𝑘) to obtain

a clean image containing the checker pattern projected onto the

CharuCo board plane (with the CharuCo board texture removed

basically). We reconstruct the position of the CharuCo board by

detecting visible markers and using OpenCV:solvePnP function to

ray-trace the detected corners of the projected checker pattern and

obtain the corresponding 3D positions. With this “ground truth” po-

sitions of the checker corners, we execute the calibration algorithm

by Zhang et al. [2000] as if the projector was a camera. This yields

the reprojection error estimates for each stop and one can clearly

see on Figure 16 (b) that the errors are the lowest if the CharuCo

board is at (or close to) the focus distance of the projector. We select

the positions with initial reprojection error lower than one pixel (29

stops out of 65) and rerun the algorithm again but combine this time

all the points into a single large “3D calibration object” to obtain the

final calibration matrix𝑀𝑃 as well as distortion coefficients 𝑑𝑃 for

the projector. The final reprojection errors are shown on Figure 16

(c).

To measure the focus distance 𝐹𝑃 and aperture 𝑓𝑃 we repeat the

measurements at the same positions but with the clear side of the

calibration board facing forward and projecting a single-pixel dot.

We perform the experiment in a dark room so that we can capture

the defocus pattern for a single projector pixel at different distances

from the projector (the same used in the previous experiment, which

is possible due to the reproducibility of the position of the linear

stage). We then fit a sigmoid function in polar coordinates to find

the degree of blur for the pixel across different distances from the

projector origin. The results are shown in Figure 16, (d). We can

then easily compute the focus distance 𝐹𝑃 = 49𝑐𝑚 for the projector

by finding a minimum of the polynomial function fitted to the data

points. Additionally, by extrapolating the diameter of the blurred

pixel all the way back to the projector origin, we can estimate

the projector’s aperture 𝑓𝑃 = 7.2𝑚𝑚 (all pixels will blur out and

converge into the projector aperture at this point).

This experiment is also used to refine the focus distance 𝐹𝐶 of

the camera (set at 𝐹𝐶 = 81𝑐𝑚 in Section B.2). We attach a vertical

strip of dark tape on top of board and measure how the sharpness

of the right edge in the images recorded by the camera at different

distances.We obtain the quantitative measure of sharpness by fitting

a sigmoid function to the horizontal profile of the edge. The distance

at which the image of edge is the sharpest is 𝐹𝐶 = 81𝑐𝑚 in our setup.

We also place an additional light on the side of the right edge used

for this measurement to eliminate any shadows due to the thickness

of the tape which could be misinterpreted as defocus of the camera

image.

The optimal projector calibration matrix𝑀𝑃𝑂 is obtained using

OpenCV::getOptimalNewCameraMatrix function in OpenCV and

is used this time to predistort the projected patterns so that they can

be used together with𝑀𝑃𝑂 to simulation distortion effects during

rendering.

Code Reference. The projector calibration requires the same

preprocessing of the CharuCo images with the addition of the de-

tection of the corners for the projected checker pattern as described

in the previous paragraph of this section. This preprocessing is

performed with the process_stage function in utils/process.py. It

takes a data directory as an input (e.g. projector_intrinsics/data/

charuco_checker_5mm) and stores the detection results in corre-

sponding subfolders. Then, the same data path and previously ac-

quired camera calibration (stored as a json file) can be provided to

the calibrate_geometry function in projector.py to estimate intrinsic

and extrinsic projector parameters.

The same setup but with clear side of the CharuCo board facing

the camera and projector during the capture is being used for mea-

suring the camera (𝐹𝐶) and projector (𝐹𝑃) focus distance as well as

projector aperture 𝑓𝑃 . The code for finding this values is divided into

12

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

(a) (b) (c) (d)

Fig. 16. Projector calibration setup (a) and calibration metrics (b-d). The linear stage is used to repeat the measurements with both sides of the calibration
board (first with checker projected onto the CharuCo side and then with single pixel dots onto the clear side). The positions where the projected checker
image is most in focus (b) are used for intrinsic calibration (𝑀𝑃 and 𝑑𝑃). The mean projector reprojection error is 0.35 pixels (c). The recovered blur diameters
of a single pixel dots is at different distances are used to find the focus distance 𝐹𝑃 and projector aperture 𝑓𝑃 (d).

Fig. 17. The projector response function 𝑟𝑃 for gray colors (left) and the geo-
metric rendering accuracy (right). The checker corners detection contributes
an average error of about half a camera pixel.

two functions calibrate_camera and calibrate_projector in focus.py

script. Note that the positions of planes are being reused from the

previous (with CharuCo side facing forward) scan because they are

reproducible with high fidelity due to the high precision linear stage

used.

B.4 Scanner Geometry
Parametrization. The geometry of the scanner is defined by the

position of the projector (translation 𝑇𝑃 and orientation 𝑅𝑃) and of

the rotation state (translation 𝑇𝑆 and orientation 𝑅𝑆). The scanned

object is defined by a translation 𝑇𝑂 and an orientation 𝑅𝑂 .

Calibration. To calibrate the extrinsic projector parameters 𝑇𝑃
and 𝑅𝑃 , we repeat the same calibration procedure used for the

intrinsic parameters but with the camera setup in its final position

(at ≈ 30 deg angle). The only difference is that this time the camera

cannot see the entire checker pattern, so we project only the visible

part as the OpenCV detection algorithm needs to see the entire

pattern to detect it.

This reduces the total number of calibration points as well as their

reconstruction accuracy. To compensate, we enforce the intrinsic

calibration parameters obtained from the previous, more favourable,

setup and only keep the extrinsic ones. This completes the geomet-

ric calibration of the camera-projector rig and we can proceed to

locating the rotating stage.

To validate the correctness of the geometric calibration and to

estimate the rendering accuracy, we conduct an experiment with

the CharuCo board as a target object. We scan it as a regular object

but also exploit its accurate markers to find out the ground truth

position without relying on the reconstruction pipeline. This po-

sition is then used to simulate the identical setup (involving the

complete set of calibration parameters) and the resulting images are

compared with the ones captured by the camera when a checker

pattern is being projected onto the CharuCo board as in Section B.3.

The deviation of the checker corners detected for real world and

simulated images can then be measured in terms of camera pixels

(three camera pixels roughly correspond to one projector pixels).

The resulting distribution is shown in Figure 17 (right). We observe

that the average error does not exceed one projector pixel and the

reprojection errors for the CharuCo markers during reconstruction

of the ground truth position of the board were also on the order of

the camera calibration accuracy of 1 camera pixel (≈ 65𝜇𝑚 on the

object surface perpendicular to the camera optical axis).

Stage calibration uses a similar procedure, but with the CharuCo

board placed on top of the rotating stage and making a scan with

small degree increments (2 deg in our case). The reconstructed posi-

tions of the CharuCo board are then combined based on the “charuco

IDs” of each detected corner into arc segments in the plane perpen-

dicular to the stage rotation axis (see Figure 19, left). One can then

recover these planes with PCA on the 3D positions of the detected

corners on a per arc basis. For the arcs with sufficient number of

point (≥ 70 in our case, because not all points are always visible in

the camera image) a 2D circle is fitted in the recovered plane. The

centers of the circles are then combined for a final line fit of the

rotating stage axis (see Figure 19, right). Note that it is not possible

to recover a full set of 𝑇𝑆 and 𝑅𝑆 parameters for the stage from this

experiment alone, as you recovered them up to the translation along

the rotation axis. To recover the missing translation along the axis

we scan the Pawn object, since it has a sphere on top with known

offset h with respect to the base of the stage (Figure 2).

Code Reference. As described in Section 1.3, we use one setup

(with camera directly behind the projector) to calibrate the intrin-

sic projector parameters. We then use the final scanner setup to

calibrate the extrinsic projector parameters, with previously de-

termined intrinsic projector parameters provided as an auxiliary

input to calibrate_geometry function in projector.py script. The cal-

ibrate_geometry function can estimate both intrinsic and extrinsic

13

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Fig. 18. Vignetting calibration setup (left) is used to measure radial profile of camera vignetting (middle) and asymmetric projector vignetting (right). The
Spectralon® did not cover the entire projector image so we later extrapolate missing parts by fitting a surface polynomial for the measured region.

Fig. 19. The calibration of the stage axis (top) is sufficient for the registra-
tion of the scans obtained at different angles. The errors of reconstructing
trajectories of the CharuCo corners and the axis are shown on the bottom.
The mean stage axis fit error is 75𝜇𝑚.

projector parameters from the same data folder but the proposed pro-

cedure yields higher accuracy calibration. The code for validation of

the camera and projector calibrations is in the simulator/validation

folder and the scan of the CharuCo board is in the accuracy_test

data folder.

A preprocessing code (see Section B.3) is being used during cal-

ibration of the rotating stage. The localization of the stage axis is

done based on CharuCo markers only but the data acquired for

different angle rotations needs to be brought into the same format

as for linear stage with merge_positions function (the results are

stored in the /merged subfolder) prior to calling process_stage in

utils/process.py. At this point, we can provide the merged data path

and camera calibration to calibrate_axis in stage.py to recover the

rotating stage axis. The minimal number of positions required for

the CharuCo marker to be considered during calibration can be

passed via the min_circle_points parameter.

Note that the rotating stage axis reconstruction is sufficient for

registration of point clouds acquired from different scanning an-

gles but one can recover a complete local frame of reference for

the rotating stage from the reconstructed point cloud of the Pawn

calibration object. Please refer to the locate_pawn function in re-

construction/locate.py script that employs knowledge of the Pawn

ball height h to recover the stage base. This information is required

by the locate_rook function to locate the Rook calibration object

which does not have enough distinct geometric features like the

Pawn does to be located independently.

B.5 Materials
Parametrization. We parameterize camera (𝑉𝐶) and projector

(𝑉𝑃) vignetting as an image of corresponding size (𝑊𝐶 x 𝐻𝐶 and

𝑊𝑃 x 𝐻𝑃 correspondingly) denoting relative brightness drop across

the camera/projector image. The projector response function 𝑟𝑃 is

a scalar function mapping pixel value to the actual light intensity

of the said projected pixel. For the material, we use a realistic mi-

crofacet scattering model with 3 adjustable parameters p and while

balance 𝐵𝑃 is used for colored objects.

Vignetting Calibration. Camera vignetting 𝑉𝐶 is calibrated by

capturing a single image of a Spectralon with known illumination

(Figure 18, left). However, because our light source is not at infinity,

we need to correct for the brightness drop due to the increasing

distance from the light source across the Spectralon. This is possible

because we know the geometry of the setup and that the profile is

radially symmetric. The measured profile for the camera vignetting

is shown in Figure 18 (middle). There is still some discrepancy (it

is not perfectly symmetric) due to the reillumination by secondary

light scattering in the room. We correct for the light attenuation,

14

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

and then fit a radial polynomial 𝐼 (𝑟) = 𝑝0+𝑝1𝑟2+𝑝2𝑟3+𝑝3𝑟4 (where
𝑟 is a distance, in pixels, from calibrated image center) to obtain

a final, symmetric result. Note that we skip linear component to

enforce zero derivative (flat surface) at the center.

For the projector vignetting 𝑉𝑃 , we cannot assume radial symme-

try because of the non-axial design of the optics (the optical axis is

off the projected image center). Therefore, we fit a surface polyno-

mial 𝐼 (𝑥,𝑦) = 𝑝0 +𝑝1𝑥2 +𝑝2𝑥𝑦 +𝑝3𝑦2 (where 𝑥 = 𝑐 −𝐶𝑐 , 𝑦 = 𝑟 −𝐶𝑟 ,
and (𝐶𝑐 ,𝐶𝑟) is the calibrated image center in [𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛] coordi-
nates) to the image obtained for the projector vignetting calibration

(after removing the camera vignetting using 𝑉𝐶). We automatically

find a corresponding cropping of the camera image by capturing an

additional image with a checker pattern projected (Figure 18, right).

Light Source Calibration. We are using the same calibration

setup (Figure 18) to measure the projector response function 𝑟𝑃
(Figure 17, left) and white balance 𝐵𝑃 . We found that there is no

valid gamma value for the projector response function, so we use a

second degree polynomial to parametrize it. Such parameterization

is easy to invert during the decoding stage if non-binary patterns

are used. For the camera, we validated that the sensor response is

linear as expected for a sensor with digital shutter.

Code Reference. The camera (𝑉𝐶) and projector (𝑉𝑃) vignetting

calibration is computed with the calibrate_vignetting functions in

the scripts camera.py and projector.py. The input data is in cal-

ibration/camera_vignetting and calibration/projector_vignetting

folders. The same data is being used for the calibration of the projec-

tor white balance 𝐵𝑃 with the calibrate_white_balance function in

projector.py. Additionally, the calibration/projector_response data

folder has to be supplied to calibrate_response in projector.py to find

out the polynomial fitting for the projector response function 𝑟𝑃 .

The implementation of the optimization procedure (see Section 1.5)

used to find out material parameters p is included in the provided

code.

C RECONSTRUCTION
In this section, we first describe the point cloud reconstruction

pipeline and then the calibration object localisation technique which

is being used during scanner geometry calibration (B.4). The source

code for both can be found in reconstruction folder of the software

repository.

C.1 Point Cloud
The point cloud reconstruction pipeline consists of three stages: (1)

decoding of the projector rays corresponding to different camera

pixels, (2) triangulation of the corresponding camera and projector

rays to obtain a point cloud of one side of the scanned object, and (3)

registration of the partial scans of the object from different angles

into a single frame of reference using stage calibration information.

1. Decoding. We use a gray code patterns by default which re-

quires independent decoding of horizontal and vertical projector ray

indices. We also project the inverse gray code patterns for greater

robustness of the decoding algorithm in presence of specular ma-

terials. The corresponding pairs of HDR images can be processed

using the decode_single function from utils/decode.py. It takes the

data path with HDR images as an input and the results will be

saved in the decoded subfolder, which can later be loaded with the

load_decoded function. Providing camera calibration via “undistor”

keyword parameter will remove lens distortions prior to decoding.

The decode_many function can be used to decode multiple scans at

once if using the multiscan script during data capture.

Because our camera typically has three time greater spatial reso-

lution on the surface of the scanned object than the projector, there

will be multiple camera pixels with identical decoded projector ray

indices. We provide an additional processing option (group=True)

that will combine those camera pixels into a single camera ray

passing through their middle point. These reduces the amount of

points in the reconstructed point cloud by one order of magnitude

as well as minimizing the discretization errors. The results of this

processing step will be saved alongside regular decoding results in

the decoded subfolder.

2. Triangulation. We are using a standard triangulation method

(http://mesh.brown.edu/byo3d/) that finds the point minimizing

the distance to both camera and projector rays for each pair of

such rays (see the triangulate function in reconstruct.py). The only

difference is that we project the said point onto the camera ray

so that we can have regular grid of depth values from camera’s

point of view. This enables us to work with depth map images in

certain applications (e.g. hole filling) instead of raw point clouds.

The reconstruct_single function in reconstruct.py performs this

step and, obviously, depends on camera and projector calibrations.

The path with original HDR images is expected to be provided

to this function on input as it automatically locates the “decoded”

subfolder from previous step and identifies whether lens distortions

have been removed prior to decoding as well as group flag. The

reconstruction results (depth maps and point clouds) will be saved to

the new “reconstructed” subfolder. The reconstruct_many function

in reconstruct.py is equivalent to the decode_many function in

utils/decode.py for batch processing multiple scans (e.g. for different

scanning angles).

3. Registration. The registration of scans acquired at different

turntable positions is rather simple when knowing the stage calibra-

tion (e.g. axis of rotation). We use the merge_single_30_deg function

from merge.py to combine point clouds from difference scans into a

single frame of reference of the first scan (position_0). It takes the

parent multi-scan directory, stage calibration and filename template

(*.ply point cloud files saved to “reconstructed” subfolder for each

scan by reconstruct_many function during triangulation) as input

and saves merged result into “merged” subfolder of the parent di-

rectory. merge_both_30_deg function is a convenience function for

merging / registering both full resolution and grouped point clouds

and names them according to object_name parameter value with

appropriate suffixes (_all for full resolution and _group for grouped

point clouds).

C.2 Object
The calibration objects are an integral part of the system. They

(e.g. a Pawn) are being used to complete the stage calibration (see

Section B.4) and to evaluate the faithfulness of the light transport

simulation in our virtual setup.

15

http://mesh.brown.edu/byo3d/

Hardware Design and Accurate Simulation of Structured-Light Scanning for Benchmarking of 3D Reconstruction Algorithms, Technical Design DocumentKoch and Piadyk, et al.

Localization. To localize the calibration object, we use MeshLab

to select the points in the reconstructed point cloud (with group-

ing feature enabled during decoding) corresponding to sections of

the object with known geometric dimensions (e.g the ball on top

of the Pawn or cylindrical base of the Rook). We then use the lo-

cate_<object_name> function from locate.py to recover the local

frame of reference for that object. The ball on top of the Pawn is

enough to fully locate the object as described in Section B.4. Com-

plete stage calibration is then used to localize the Rook based on its

cylindrical base. The Shapes object can always be localized based

on top surfaces of its cube, cylinder and hexagon shape features.

The Plane is easy to localize using PCA.

Texture. We are using white colored patterns when performing

the geometric scan of the object. In addition, we also project uniform

red, green, and blue patterns to capture the color information and

the texture of the scanned object (useful for applications such as

hole filling). These HDR images, corresponding to independent RGB

colors, can be combined into a single colored HDR image using

the color.py script which depends on projector calibration only

(e.g. projector white balance). undistor.py can further be used to

remove the camera lens distortion for these images (with obvious

dependency on camera calibration) so that they can be directly

compared to the simulated/rendered ones (extra image translation

might be needed to match the optical axes of both images). By using

the projector calibration instead, one can pre-distort the projector

patterns for simulation of the projector lens distortion with the

pinhole model but we have conveniently incorporated this step

already into our simulator.

D DATASET GENERATION
Our scanning simulation software matches the calibrated setup from

the physical scanner and can be used to generate large amounts

of realistic data. The first stage of the simulation is the generation

of images by physically based rendering. This process is the most

time-consuming of the processing pipeline as there are multiple

images that need to be rendered for a full scan. For example, there

are 46 images that need to be rendered for each scan when using

Gray code patterns. However, our implementation supports parallel

processing and is therefore ideally suited for data generation on

multi-core clusters. Multiple parameters and inputs can be adjusted

and chosen at this step, ranging from the input geometry, the amount

of samples for the rendering to the camera image resolution. Given

all the settings, the renderer produces HDR (openexr) and LDR (png)

images together with the ground truth depth values (npy).

After the image generation process, we use the same processing

steps as described in Appendix C with minor modifications like

different thresholds, cropping, etc. Next to the source version of

our framework, we supply a Docker image with the preinstalled

framework. This image runs a Jupyter notebook which contains

a full tutorial on how to use our data generation framework. The

tutorial demonstrates all the different options of how to generate

data with our simulator. It is divided into 2 parts: the first part covers

the initialization and rendering stage, and the second part covers

the decoding, triangulation and registration stages. The tutorial

can be followed and adapted step by step to generate data for most

use-cases. More advanced adaptations are possible but require to

modify or extend our source code.

16

	Abstract
	1 Hardware Setup and Simulator
	1.1 Calibration Objects
	1.2 Camera
	1.3 Lights
	1.4 Scanner Geometry
	1.5 Materials

	2 Related Work
	3 Additional Accuracy Experiments
	3.1 Correspondence Accuracy
	3.2 Reconstruction Accuracy
	3.3 Simulation Accuracy

	4 Technical Details on the Benchmark Baselines
	4.1 Denoising

	References
	A Hardware Guide
	A.1 Physical Setup
	A.2 Software Package

	B Parameterization and Calibration
	B.1 Calibration Objects
	B.2 Camera
	B.3 Projector
	B.4 Scanner Geometry
	B.5 Materials

	C Reconstruction
	C.1 Point Cloud
	C.2 Object

	D Dataset Generation

